Preference-guided evolutionary algorithms for many-objective optimization

نویسندگان

  • Fillipe Goulart
  • Felipe Campelo
چکیده

This paper presents a technique that incorporates preference information within the framework of multi-objective evolutionary algorithms for the solution of many-objective optimization problems. The proposed approach employs a single reference point to express the preferences of a decision maker, and adaptively biases the search procedure toward the region of the Pareto-optimal front that best matches its expectations. Experimental results suggest that incorporating preferences within these algorithms leads to improvements in several quality criteria, and that the proposed approach is capable of yielding competitive results when compared against existing algorithms. © 2015 Elsevier Inc. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

OPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL EVOLUTIONARY ALGORITHMS

Structural optimization, when approached by conventional (gradient based) minimization algorithms presents several difficulties, mainly related to computational aspects for the huge number of nonlinear analyses required, that regard both Objective Functions (OFs) and Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been successfully developed and applied as a ...

متن کامل

Approximation-Guided Evolutionary Multi-Objective Optimization

Multi-objective optimization problems arise frequently in applications but can often only be solved approximately by heuristic approaches. Evolutionary algorithms have been widely used to tackle multi-objective problems. These algorithms use different measures to ensure diversity in the objective space but are not guided by a formal notion of approximation. We present a new framework of an evol...

متن کامل

A Hybrid MOEA/D-TS for Solving Multi-Objective Problems

In many real-world applications, various optimization problems with conflicting objectives are very common. In this paper we employ Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), a newly developed method, beside Tabu Search (TS) accompaniment to achieve a new manner for solving multi-objective optimization problems (MOPs) with two or three conflicting objectives. This i...

متن کامل

A Preference Based Interactive Evolutionary Algorithm for Multi-objective Optimization: PIE

This paper describes a new Preference-based Interactive Evolutionary (PIE) algorithm for multi-objective optimization which exploits the advantages of both evolutionary algorithms andmultiple criteria decision making approaches. Our algorithm uses achievement scalarizing functions and the potential of population based evolutionary algorithms to help the decision maker to direct the search towar...

متن کامل

A Bi-objective Stochastic Optimization Model for Humanitarian Relief Chain by Using Evolutionary Algorithms

Due to the increasing amount of natural disasters such as earthquakes and floods and unnatural disasters such as war and terrorist attacks, Humanitarian Relief Chain (HRC) is taken into consideration of most countries. Besides, this paper aims to contribute humanitarian relief chains under uncertainty. In this paper, we address a humanitarian logistics network design problem including local dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Inf. Sci.

دوره 329  شماره 

صفحات  -

تاریخ انتشار 2016